All Uniform Polyhedra
The list gives the name as it appears in
[Harel93],
and
the Wythoff Symbol in parentheses.
The link points to a page with a higher-resolution image, an animation,
and some more information about the polyhedron.
Polyhedra with integral Wythoff Symbols are convex.
An alternative to this list is a 2-dimensional graphical index,
or the list sorted by Wythoff symbol.
Tetrahedral Symmetry
- 01: tetrahedron (3|2 3)
- 02: truncated tetrahedron (2 3|3)
- 03: octahemioctahedron (3/2 3|3)
- 04: tetrahemihexahedron (3/2 3|2)
Octahedral Symmetry
- 05: octahedron (4|2 3)
- 06: cube (3|2 4)
- 07: cuboctahedron (2|3 4)
- 08: truncated octahedron (2 4|3)
- 09: truncated cube (2 3|4)
- 10: rhombicuboctahedron (3 4|2)
- 11: truncated cuboctahedron (2 3 4|)
- 12: snub cube (|2 3 4)
- 13: small cubicuboctahedron (3/2 4|4)
- 14: great cubicuboctahedron (3 4|4/3)
- 15: cubohemioctahedron (4/3 4|3)
- 16: cubitruncated cuboctahedron (4/3 3 4|)
- 17: great rhombicuboctahedron (3/2 4|2)
- 18: small rhombihexahedron (3/2 2 4|)
- 19: stellated truncated hexahedron (2 3|4/3)
- 20: great truncated cuboctahedron (4/3 2 3|)
- 21: great rhombihexahedron (4/3 3/2 2|)
Icosahedral Symmetry
- 22: icosahedron (5|2 3)
- 23: dodecahedron (3|2 5)
- 24: icosidodecahedron (2|3 5)
- 25: truncated icosahedron (2 5|3)
- 26: truncated dodecahedron (2 3|5)
- 27: rhombicosidodecahedron (3 5|2)
- 28: truncated icosidodechedon (2 3 5|)
- 29: snub dodecahedron (|2 3 5)
- 30: small ditrigonal icosidodecahedron (3|5/2 3)
- 31: small icosicosidodecahedron (5/2 3|3)
- 32: small snub icosicosidodecahedron (|5/2 3 3)
- 33: small dodecicosidodecahedron (3/2 5|5)
- 34: small stellated dodecahedron (5|2 5/2)
- 35: great dodecahedron (5/2|2 5)
- 36: dodecadodecahedron (2|5/2 5)
- 37: truncated great dodecahedron (2 5/2|5)
- 38: rhombidodecadodecahedron (5/2 5|2)
- 39: small rhombidodecahedron (2 5/2 5|)
- 40: snub dodecadodecahedron (|2 5/2 5)
- 41: ditrigonal dodecadodecahedron (3|5/3 5)
- 42: great ditrigonal dodecicosidodecahedron (3 5|5/3)
- 43: small ditrigonal dodecicosidodecahedron (5/3 3|5)
- 44: icosidodecadodecahedron (5/3 5|3)
- 45: icositruncated dodecadodecahedron (5/3 3 5|)
- 46: snub icosidodecadodecahedron (|5/3 3 5)
- 47: great ditrigonal icosidodecahedron (3/2|3 5)
- 48: great icosicosidodecahedron (3/2 5|3)
- 49: small icosihemidodecahedron (3/2 3|5)
- 50: small dodecicosahedron (3/2 3 5|)
- 51: small dodecahemidodecahedron (5/4 5|5)
- 52: great stellated dodecahedron (3|2 5/2)
- 53: great icosahedron (5/2|2 3)
- 54: great icosidodecahedron (2|5/2 3)
- 55: great truncated icosahedron (2 5/2|3)
- 56: rhombicosahedron (2 5/2 3|)
- 57: great snub icosidodecahedron (|2 5/2 3)
- 58: small stellated truncated dodecahedron (2 5|5/3)
- 59: truncated dodecadodecahedron (5/3 2 5|)
- 60: inverted snub dodecadodecahedron (|5/3 2 5)
- 61: great dodecicosidodecahedron (5/2 3|5/3)
- 62: small dodecahemicosahedron (5/3 5/2|3)
- 63: great dodecicosahedron (5/3 5/2 3|)
- 64: great snub dodecicosidodecahedron (|5/3 5/2 3)
- 65: great dodecahemicosahedron (5/4 5|3)
- 66: great stellated truncated dodecahedron (2 3|5/3)
- 67: great rhombicosidodecahedron (5/3 3|2)
- 68: great truncated icosidodecahedron (5/3 2 3|)
- 69: great inverted snub icosidodecahedron (|5/3 2 3)
- 70: great dodecahemidodecahedron (5/3 5/2|5/3)
- 71: great icosihemidodecahedron (3/2 3|5/3)
- 72: small retrosnub icosicosidodecahedron (|3/2 3/2 5/2)
- 73: great rhombidodecahedron (3/2 5/3 2|)
- 74: great retrosnub icosidodecahedron (|3/2 5/3 2)
- 75: great dirhombicosidodecahedron (|3/2 5/3 3 5/2)
Dihedral Symmetry
These examples have five fold symmetry.
There are such polyhedra for each n > 2.
- 76: pentagonal prism (2 5|2)
- 77: pentagonal antiprism (|2 2 5)
- 78: pentagrammic prism (2 5/2|2)
- 79: pentagrammic antiprism (|2 2 5/2)
- 80: pentagrammic crossed antiprism (|2 2 5/3)
Back to polyhedra page
Programs and high-resolution images for uniform polyhedra are available in
the book The Mathematica Programmer II by R. Maeder.
All 75 uniform polyhedra, with background information, a clickable map, and animations.
A service provided by MathConsult AG, http://www.mathconsult.ch/.
© Copyright 1995, 1997 by Roman E. Maeder. All rights reserved.